A novel device to stretch multiple tissue samples with variable patterns: Application for mRNA regulation in tissue-engineered constructs

نویسندگان

  • Jasmin Imsirovic
  • Kelsey Derricks
  • Jo Ann Buczek-Thomas
  • Celeste B. Rich
  • Matthew A. Nugent
  • Béla Suki
چکیده

A broad range of cells are subjected to irregular time varying mechanical stimuli within the body, particularly in the respiratory and circulatory systems. Mechanical stretch is an important factor in determining cell function; however, the effects of variable stretch remain unexplored. In order to investigate the effects of variable stretch, we designed, built and tested a uniaxial stretching device that can stretch three-dimensional tissue constructs while varying the strain amplitude from cycle to cycle. The device is the first to apply variable stretching signals to cells in tissues or three dimensional tissue constructs. Following device validation, we applied 20% uniaxial strain to Gelfoam samples seeded with neonatal rat lung fibroblasts with different levels of variability (0%, 25%, 50% and 75%). RT-PCR was then performed to measure the effects of variable stretch on key molecules involved in cell-matrix interactions including: collagen 1α, lysyl oxidase, α-actin, β1 integrin, β3 integrin, syndecan-4, and vascular endothelial growth factor-A. Adding variability to the stretching signal upregulated, downregulated or had no effect on mRNA production depending on the molecule and the amount of variability. In particular, syndecan-4 showed a statistically significant peak at 25% variability, suggesting that an optimal variability of strain may exist for production of this molecule. We conclude that cycle-by-cycle variability in strain influences the expression of molecules related to cell-matrix interactions and hence may be used to selectively tune the composition of tissue constructs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

Objecttive (s): Polyvinylalcohol (PVA) is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinn...

متن کامل

Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.

OBJECTIVE In this study, we describe a novel bioreactor system to deliver controlled stretch protocols to bioengineered heart muscle (BEHM) constructs. Our primary objective was to evaluate the effect of mechanical stretch on the contractile properties of three-dimensional cardiac constructs in vitro. METHODS BEHMs were formed by culturing primary neonatal cardiac myocytes in a fibrin gel usi...

متن کامل

P-69: Expression of Leptin Receptor mRNA in Ovine Corpus Luteum

Background: Many hormones are involved in the regulation of reproduction. Leptin hormone which is mainly secreted by adipose tissue plays an important role in energy homeostasis and reproduction. It seems that leptin is an important linkage between body metabolism and reproductive system. Moreover, it has been shown that leptin and leptin receptor express in reproductive organs of some species....

متن کامل

مروری بر داربست‌های مهندسی بافت و عملکرد آن‌ها در پزشکی بازساختی

 One of the challenges that medical sciences has long been facing is to find the best therapeutic method for the damaged tissues. The main purpose of tissue engineering and regenerative medicine is the development of biological implant or engineered tissues to repair, regenerate or replace the damaged tissue and maintain the organ function. At the moment, a lot of research has been done in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013